On the uncertainty relation in the coherent spin-state representation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7213
(http://iopscience.iop.org/0301-0015/7/2/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:55

Please note that terms and conditions apply.

On the uncertainty relation in the coherent spin-state representation

L Kołodziejczyk and A Ryter
Theoretical Physics Department, University of Łodz, Łodz, Poland

Received 30 May 1973, in final form 16 July 1973

Abstract

We intend to compute the product $\left(\delta S_{x}\right)^{2}\left(\delta S_{y}\right)^{2}$ where $\left(\delta S_{x, y}\right)^{2}=\left\langle S_{x, y}^{2}\right\rangle-\left\langle S_{x, y}\right\rangle^{2}$; averaging is performed in the coherent spin-state representation given by Radcliffe. After applying the Holstein-Primakoff transformation $\hat{S}_{-}=(2 S)^{1 / 2} \hat{a}^{+}, \hat{S}_{+}=(2 S)^{1 / 2} \hat{a}$ and $\mu=\alpha /(2 S)^{1 / 2}$, and putting $S \rightarrow \infty$ we proceed from Radcliffe space into the Glauber space. After this procedure the product $\left(\delta S_{x}\right)^{2}\left(\delta S_{y}\right)^{2}$ becomes $(\delta x)^{2}(\delta p)^{2}$.

Using the Jackiw equation we have shown that the function $|\mu=0\rangle$ is the only one which minimizes the uncertainty product, for every S.

The Radcliffe space is defined by (Radcliffe 1971)

$$
\begin{equation*}
|\mu\rangle=\left(1+|\mu|^{2}\right)^{-S} \sum_{p=0}^{2 S}\left(\frac{2 S!}{p!(2 S-p)!}\right)^{1 / 2} \mu^{p}|p\rangle \tag{1}
\end{equation*}
$$

where $|p\rangle$ is the eigenfunction of \hat{S}_{z} :

$$
\begin{equation*}
\hat{S}_{z}|p\rangle=(S-p)|p\rangle \quad 0 \leqslant p \leqslant 2 S \tag{2}
\end{equation*}
$$

As we know

$$
\begin{equation*}
\hat{S}_{x}=\frac{1}{2}\left(\hat{S}_{+}+\hat{S}_{-}\right), \quad \hat{S}_{y}=\frac{1}{2}\left(1\left(\hat{S}_{-}-\hat{S}_{+}\right)\right. \tag{3}
\end{equation*}
$$

where \hat{S}_{-}and \hat{S}_{+}are the spin-number creation and annihilation operators respectively.
Making use of Radcliffe's formulae for the matrix elements $\langle\lambda| S_{+}|\mu\rangle$ and $\langle\lambda| S_{-}|\mu\rangle$ we can write (Radcliffe 1971):

$$
\begin{align*}
& \langle\lambda| \hat{S}_{x}|\mu\rangle=\frac{S\left(\mu+\lambda^{*}\right)}{1+\lambda^{*} \mu}\langle\lambda \mid \mu\rangle \tag{4a}\\
& \langle\lambda| \hat{S}_{y}|\mu\rangle=\frac{i S\left(\lambda^{*}-\mu\right)}{1+\lambda^{*} \mu}\langle\lambda \mid \mu\rangle \tag{4b}\\
& \langle\lambda| \hat{S}_{z}|\mu\rangle=\frac{S\left(1-\lambda^{*} \mu\right)}{1+\lambda^{*} \mu}\langle\lambda \mid \mu\rangle . \tag{4c}
\end{align*}
$$

It is well known that

$$
\begin{equation*}
\langle\lambda| \hat{S}_{x, y}^{2}|\mu\rangle=\frac{2 S+1}{\pi} \int \frac{\langle\lambda| S_{x, y}|v\rangle\langle v| S_{x, y}|\mu\rangle \mathrm{d}^{2} v}{\left(1+|v|^{2}\right)^{2}} . \tag{5}
\end{equation*}
$$

From (4a) and (4b), by performing standard computations, we get

$$
\begin{align*}
\langle\lambda| S_{x, y}^{2}|\mu\rangle=\frac{1}{4} & \left(\pm \frac{2 S(2 S-1)\left(\lambda^{*}\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}} \pm \frac{2 S(2 S-1) \mu^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{4 S^{2} \lambda^{*} \mu}{1+\lambda^{*} \mu}-\frac{2 S(2 S-1)\left(\lambda^{*} \mu\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}\right. \\
& \left.+\frac{2 S}{1+\lambda^{*} \mu}+\frac{2 S(2 S-1) \lambda^{*} \mu}{\left(1+\lambda^{*} \mu\right)^{2}}\right)\langle\lambda \mid \mu\rangle . \tag{6}
\end{align*}
$$

Putting $\lambda=\mu$ into formulae (4a), (4b) and (6) gives the relevant mean values. Since $\left(\delta S_{x, y}\right)^{2}=\left\langle\hat{S}_{x, y}^{2}\right\rangle-\left\langle\hat{S}_{x, y}\right\rangle^{2}$, therefore

$$
\begin{align*}
\left(\delta S_{x}\right)^{2}= & \frac{1}{4}\left(\frac{2 S(2 S-1)\left(\mu^{*}\right)^{2}}{\left(1+|\mu|^{2}\right)^{2}}+\frac{2 S(2 S-1) \mu^{2}}{\left(1+|\mu|^{2}\right)^{2}}+\frac{4 S^{2}|\mu|^{2}}{1+|\mu|^{2}}-\frac{2 S(2 S-1)|\mu|^{4}}{\left(1+|\mu|^{2}\right)^{2}}+\frac{2 S}{1+|\mu|^{2}}\right. \\
& \left.+\frac{2 S(2 S-1)|\mu|^{2}}{\left(1+|\mu|^{2}\right)^{2}}\right)-\frac{4 S^{2}(\operatorname{Re} \mu)^{2}}{\left(1+|\mu|^{2}\right)^{2}} \tag{7a}
\end{align*}
$$

$$
\left(\delta S_{y}\right)^{2}=\frac{1}{4}\left(-\frac{2 S(2 S-1)\left(\mu^{*}\right)^{2}}{\left(1+|\mu|^{2}\right)^{2}}-\frac{2 S(2 S-1) \mu^{2}}{\left(1+|\mu|^{2}\right)^{2}}+\frac{4 S^{2}|\mu|^{2}}{1+|\mu|^{2}}-\frac{2 S(2 S-1)|\mu|^{4}}{\left(1+|\mu|^{2}\right)^{2}}+\frac{2 S}{1+|\mu|^{2}}\right.
$$

$$
\begin{equation*}
\left.+\frac{2 S(2 S-1)|\mu|^{2}}{\left(1+|\mu|^{2}\right)^{2}}\right)-\frac{4 S^{2}(\operatorname{Im} \mu)^{2}}{\left(1+|\mu|^{2}\right)^{2}} \tag{7b}
\end{equation*}
$$

Following Radcliffe, we assume that μ represents a stereographic projection of the spin on the plane tangent to the sphere in its north pole. Therefore, we must write

$$
\begin{equation*}
\mu=\tan \left(\frac{1}{2} \theta\right) \mathrm{e}^{\mathrm{i} \phi} . \tag{8}
\end{equation*}
$$

We can write the previous formulae more elegantly by using the above form for μ, thus

$$
\begin{align*}
& \left(\delta S_{x}\right)^{2}=\frac{1}{4} S(1-2 S) \cos \theta+\frac{1}{4} S(1+2 S)-\frac{1}{2} S\left(1+\cos ^{2} \phi\right) \sin ^{2} \theta \tag{9a}\\
& \left(\delta S_{y}\right)^{2}=\frac{1}{4} S(1-2 S) \cos \theta+\frac{1}{4} S(1+2 S)-\frac{1}{2} S \sin ^{2} \phi \sin ^{2} \theta . \tag{9b}
\end{align*}
$$

Now we apply the Holstein-Primakoff transformations

$$
\hat{S}_{-}=(2 S)^{1 / 2} \hat{a}^{\dagger}, \quad \mu=\frac{\alpha}{(2 S)^{1 / 2}}
$$

and

$$
\begin{equation*}
\hat{S}_{+}=(2 S)^{1 / 2} \hat{a}, \quad \mu=\tan \left(\frac{1}{2} \theta_{S}\right) \mathrm{e}^{\mathrm{i} \phi S} . \tag{10}
\end{equation*}
$$

If μ maps a finite value on α then

$$
\begin{equation*}
\theta_{s}=0 \tag{11}
\end{equation*}
$$

As $S \rightarrow \propto$ we see that

$$
\begin{equation*}
\frac{\left(\delta S_{x}\right)^{2}}{S} \frac{\left(\delta S_{y}\right)^{2}}{S}=\frac{1}{4} \tag{12}
\end{equation*}
$$

This can be interpreted as the uncertainty relation on the Glauber state $|\alpha\rangle$ (Glauber 1963), since from (10) and the expression for a, a^{\dagger} in terms of p, x, we have

$$
\begin{equation*}
\frac{\left(\delta S_{x}\right)^{2}\left(\delta S_{y}\right)^{2}}{S^{2}}=(\delta p)^{2}(\delta x)^{2} \tag{13}
\end{equation*}
$$

To discuss the uncertainty problem more comprehensively we must consider the Jackiw equation (Jackiw 1968):

$$
\begin{equation*}
\left(\frac{(\hat{X}-\langle X\rangle)^{2}}{(\delta X)^{2}}+\frac{(\hat{Y}-\langle Y\rangle)^{2}}{(\delta Y)^{2}}-\frac{2 \hat{A}}{\langle A\rangle}\right)|\psi\rangle=0 \tag{14}
\end{equation*}
$$

which selects so called 'critical states' eg a class of functions $|\psi\rangle$ for which the product $(\delta X)^{2}(\delta Y)^{2}$ is constant. The operators \hat{X}, \hat{Y} and \hat{A} are related by the commutation rule

$$
\begin{equation*}
[\hat{X}, \hat{Y}]=\mathrm{i} \hat{A} \tag{15}
\end{equation*}
$$

We attempt to prove that, in the Radcliffe space, there are such 'critical states' related to the uncertainty product $\left(\delta S_{x}\right)^{2}\left(\delta S_{y}\right)^{2}$. In other words, we will solve the following Jackiw equation:

$$
\begin{equation*}
\left(\frac{\left(\hat{S}_{x}-\left\langle S_{x}\right\rangle\right)^{2}}{\left(\delta S_{x}\right)^{2}}+\frac{\left(\hat{S}_{y}-\left\langle S_{y}\right\rangle\right)^{2}}{\left(\delta S_{y}\right)^{2}}-\frac{2 \hat{S}_{z}}{\left\langle S_{z}\right\rangle}\right)|\mu\rangle=0 . \tag{16}
\end{equation*}
$$

We multiply this equation on the right-hand side by an arbitrary bra vector $\langle\lambda|$. In this way we get the new equation

$$
\begin{equation*}
\frac{\langle\lambda|\left(\hat{S}_{x}-\left\langle S_{x}\right\rangle\right)^{2}|\mu\rangle}{\left(\delta S_{x}\right)^{2}}+\frac{\langle\lambda|\left(\hat{S}_{y}-\left\langle S_{y}\right\rangle\right)^{2}|\mu\rangle}{\left(\delta S_{y}\right)^{2}}-\frac{2\langle\lambda| \hat{S}_{z}|\mu\rangle}{\left\langle S_{z}\right\rangle}=0 . \tag{17}
\end{equation*}
$$

Having all matrix elements (see formulae (4a), (4b) and (6)) we may write the last equation finally in the form:

$$
\begin{gather*}
{\left[\frac { 1 } { 4 (\delta S _ { x }) ^ { 2 } } \left(\frac{2 S(2 S-1)\left(\lambda^{*}\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{2 S(2 S-1) \mu^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{4 S^{2} \lambda^{*} \mu}{1+\lambda^{*} \mu}-\frac{2 S(2 S-1)\left(\lambda^{*} \mu\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{2 S}{1+\lambda^{*} \mu}\right.\right.} \\
\left.\quad+\frac{2 S(2 S-1) \lambda^{*} \mu}{\left(1+\lambda^{*} \mu\right)^{2}}-\frac{2 S\left(\lambda^{*}+\mu\right)}{1+\lambda^{*} \mu}\left\langle S_{x}\right\rangle+\left\langle S_{x}\right\rangle^{2}\right)+\frac{1}{4\left(\delta S_{y}\right)^{2}}\left(-\frac{2 S(2 S-1)\left(\lambda^{*}\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}\right. \\
\quad-\frac{2 S(2 S-1) \mu^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{4 S^{2} \lambda^{*} \mu}{1+\lambda^{*} \mu}-\frac{2 S(2 S-1)\left(\lambda^{*} \mu\right)^{2}}{\left(1+\lambda^{*} \mu\right)^{2}}+\frac{2 S}{1+\lambda^{*} \mu}+\frac{2 S(2 S-1)}{\left(1+\lambda^{*} \mu\right)^{2}} \lambda^{*} \mu \\
\left.\left.\quad-\frac{2 \mathrm{i} S\left(\lambda^{*}-\mu\right)}{1+\lambda^{*} \mu}\left\langle S_{y}\right\rangle+\left\langle S_{y}\right\rangle^{2}\right)-\frac{2 S}{\left\langle S_{z}\right\rangle}\left(\frac{1-\lambda^{*} \mu}{1+\lambda^{*} \mu}\right)\right]\langle\lambda \mid \mu\rangle=0 \tag{18}
\end{gather*}
$$

This equation is very easily written in the form :

$$
\begin{equation*}
a\left(\lambda^{*}\right)^{2}+b \lambda^{*}+c=0 \tag{19}
\end{equation*}
$$

where a, b, c are functions of $\left(\mu, \mu^{*}\right)$. Since equation (19) is satisfied for any arbitrary λ^{*}, therefore a, b, c must simultaneously disappear; this is only satisfied when $\theta=0$ or $\mu=0$. It can be seen from the formulae ($9 a$) and ($9 b$) that the function $|0\rangle$ is also the one that minimizes the uncertainty product.

Since for $S \rightarrow \infty$ we have $\theta_{S}=0$ therefore, this property is induced on the Glauber space when S tends to infinity.

References

Glauber R J 1963 Phys. Rev. 1312766
Jackiw R 1968 J. math. Phys. 9339
Radcliffe J M 1971 J. Phys. A: Gen. Phys. 4313

